Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains
نویسندگان
چکیده
Experimental recordings of the collective activity of interacting spiking neurons exhibit 1 random behavior and memory effects, thus the stochastic process modeling the spiking activity 2 is expected to show some degree of time irreversibility. We use the thermodynamic formalism to 3 build a framework, in the context of spike train statistics, to quantify the degree of irreversibility 4 of any parametric maximum entropy measure under arbitrary constraints, and provide an explicit 5 formula for the information entropy production of the inferred Markov maximum entropy process. 6 We provide examples to illustrate our results and discuss the importance of time irreversibility for 7 modeling the spike train statistics. 8
منابع مشابه
Taylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملSpike train entropy-rate estimation using hierarchical Dirichlet process priors
Entropy rate quantifies the amount of disorder in a stochastic process. For spiking neurons, the entropy rate places an upper bound on the rate at which the spike train can convey stimulus information, and a large literature has focused on the problem of estimating entropy rate from spike train data. Here we present Bayes least squares and empirical Bayesian entropy rate estimators for binary s...
متن کاملThe Rate of Rényi Entropy for Irreducible Markov Chains
In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.
متن کاملInformation Entropy Production of Spatio-Temporal Maximum Entropy Distributions
Spiking activity from populations of neurons display causal interactions and memory effects. Therefore, they are expected to show some degree of irreversibility in time. Motivated by the spike train statistics, in this paper we build a framework to quantify the degree of irreversibility of any maximum entropy distribution. Our approach is based on the transfer matrix technique, which enables us...
متن کاملThe Computational Structure of Spike Trains
Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018